If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3t^2-35t+4=0
a = 3; b = -35; c = +4;
Δ = b2-4ac
Δ = -352-4·3·4
Δ = 1177
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-35)-\sqrt{1177}}{2*3}=\frac{35-\sqrt{1177}}{6} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-35)+\sqrt{1177}}{2*3}=\frac{35+\sqrt{1177}}{6} $
| 8=1n/3 | | 5-4x+x-1=-22 | | 3/7x=-4/7 | | 8a+8a-12=5a+7a | | 4.4+10m=7.91 | | 11a+16a-100=110 | | 4x+2x+x=2x+12 | | 2.07=x/0.23 | | -5b+6b=-5(6b+7)-(1+5b) | | 6x-15+-6=15 | | 6(x+15=-42 | | 4(2x−(3−x)+5)=−6x−28 | | −7+6(−5z+1)=3(−5z−8)−2 | | 5(2x+6)=-33+53 | | 36a3+120a2+100a=0 | | 5t+1/4=t+6/8+t-4/8 | | x-x/6=4 | | 34y-y+11=100 | | 18=13x-45 | | -6+5v-3v=v-3 | | q+(-5)/3=3 | | 4(x+3)+10x=40 | | 4x-20+x=215 | | 2x+5.5=18.5 | | -2/3c=-6 | | G(x)=-4+1 | | 100=4x-400 | | 2(4x+5)=-32+26 | | c=(7)(310)/7+12 | | 11(x-2)+x=26 | | .5v^2=10 | | 3r/4=1-8 |